J. Phys. Chem. A 2009, 113, 14979-14986 14979

Eigen Energies and the Statistical Distributions of the Rovibrational Levels of the Bosonic

van der Waals Argon Trimer'

Anton Gagin,” Evgeny Yarevsky,” Moses Salci,’ and Nils Elander**

Department of Computational Physics, St. Petersburg State University, 198504 St. Petersburg, Russia, and
AlbaNova University Center, Department of Physics, Stockholm University, SE-106 91 Stockholm, Sweden

Received: May 31, 2009; Revised Manuscript Received: October 5, 2009

The eigen energies and the statistical distributions of the rovibrational levels (/ = 0—2) of the bosonic van
der Waals argon trimer were calculated using a full angular momentum three-dimensional finite element
method. The influence of interatomic potentials on the vibrational levels and statistical properties of the trimer

was discussed.

Introduction

van der Waals (vdW) clusters are in general characterized as
weakly bound complexes of closed shell atoms or molecules
with relatively small dissociation energies of typically a few
cm™! to about 1000 cm™!, and with large bond lengths about
3—4 A2 Due to these factors, vdW clusters are only stable at
very low temperatures. Many of them may dissociate by a single
infrared photon by the breaking of a vdW bond. The interaction
potentials of these complexes along the vdW bonds are
dominated by long-range attractive dispersion forces of
dipole—dipole nature, the interaction potential behaving as r~9,
where r is the vdW bond distance. Due to the relatively weak
coupling between the vdW modes, a weak restoring force is
present along the vdW bond distance, making the complex
diffuse and unstructured in space.

The importance of the study of small weakly bound vdW
clusters cannot be overemphasized. Important information such
as many-body interaction potentials may be revealed, which in
turn may be of fundamental importance in the study of larger
clusters of atoms, such as superfluidity of finite-sized systems.?
Besides this, the study of small vdW clusters may give ready
information on fundamental quantum mechanical effects oc-
curring in few-body physics.

Accurate calculations of small vdW clusters are, however, a
challenging problem mainly due to their strongly anharmonic
potential surfaces implying diffuse and delocalized probability
distributions of the wave function in the configuration space.
As such, calculations of atomic vdW trimers provide a challenge
for any formal/numerical method.*~!?

Recently the argon trimer Ar; was addressed in studies for a
search of the optimal sum of two-body pair potentials model
using variational expansion over distributed Gaussian functions.’
This paper also discusses the influence of three-body so called
Axilrod—Teller corrections to the potential.'>'* Both Axilrod—Teller
corrections and ab initio three-body forces are further discussed
in ref 15. This paper also describes higher (/ = 0) angular
momentum states in a hyperspherical full angular momentum
formalism with the discrete variable representation (DVR)
including Coriolis forces. The maximum angular momentum
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studied is J = 6. In refs 16 and 17 the distributed Gaussian
functions method is used to describe symmetry assignments of
rotational energy levels assuming the vibration—rotation separa-
tion. States with the maximum angular momentum quantum
number up to J = 20 are studied in ref 17.

In this report, we study the bosonic vdW argon trimer Ar;
using an exact Hamiltonian in the full angular momentum
representation numerically realized with a finite element
method.” The bound state results for / = 0 with both Morse-
type and semiempirical potentials are compared to previous
studies.® 1215 Structural properties are calculated and com-
pared to known results. Hence we have also calculated the
rovibrational states up to J = 2 for both positive and negative
parities.

Compared to lighter trimers, the argon trimer has relatively
many vibrational states, and even more rovibrational ones.
Hence it is meaningful to discuss the statistical properties of
the trimer energy levels. The studies of the Ar; statistical
properties are available in the literature'>'® for some potentials.
However, in the same way as the choice of an interatomic
potential affects positions of individual levels, it should also
affect the statistical properties of the system. Hence, here we
perform a comparative study of two potentials from this point
of view.

We estimate the nearest neighbor level spacings distribution,
the spectral rigidity, and some correlation coefficients for the
spectrum and compare them for the Morse and semiempirical
potentials.

Theoretical Approach

The wave function of a three-body quantum system with the
total angular momentum J can be expanded in terms of
symmetrical Wigner D-functions.' Jacobi coordinates are
chosen for the body-fixed coordinate R = (x, y, ), where x is
the distance between particles 2 and 3, y is the distance between
particle 1 and the center of mass of the pair (2, 3), and ¢ is the
angle between the vectors X and y. The Schrodinger equation
for the trimer, in the terms of the wave function components
Y9, can be written as!%?

© 2009 American Chemical Society

Published on Web 11/02/2009



14980 J. Phys. Chem. A, Vol. 113, No. 52, 2009

—if1 + 6
[_A(X) _

W1+ o,

3/1 _(J,9)

4my2 [34’
AY + V(x,y ®)
3/1+(

+ (1 — s) cot ¢]¢”‘ D4

— E]w(k) _

+ (1 + 5) cot qb]l/;u“ﬂ) =0
(D

o e

The helicity quantum number, s, varies as s = 0, ..., J for positive
parity, and as s = 1, ..., J for negative parity. The diagonal
components AY; of the kinetic energy operator are defined as
follows

—AY = — —x + (3—2 + oot g s )]
* a¢’ 0 sin® ¢
AO = 3 32
—AY = — =y = (U + 1) =257 +

4my*L" 9y
9 'S )]
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Here A+(J, s) = [J(J + 1) — s(s £ )] and V"V = 0, and m
is the mass of the Ar atom.

Potential Energy Surface. The potential energy surface in
eq 1 can be decomposed into the sum of pairwise-additive
interactions

VR) = V,(ryy) + V,(ry5) + Vi(r3) 2)

where rp», 13, and r3; are the interatomic distances. These
distances are expressed in the terms of Jacobi coordinates as

, =17, — F,l = (" + xycos ¢ + x*/4)"”

ry =17, — 7l = (" — xycos ¢ + x°/4)"?

In the present work we do not take into account a relatively
small nonadditive contribution to the total interaction (2).2' This
short-range three-body term raises the ground state up to 3 cm™!,
but its influence decreases gradually with the increase of the
vibrational excitation down below 1 cm™! for the 20th symmetric
states.”!3

To describe the Ar—Ar interaction, we have selected two
potentials: the semiempirical HFDID1 potential of Aziz,?*> and
the Morse potential.!” The Aziz potential® results in a well depth
of 103.3 cm™" and an equilibrium distance r,, = 3.757 A. The
total potential 2 has a well depth 310 cm™! and a barrier to
linearity at the level —170 cm™!. The two-body dissociation
threshold for the Ar; — Ar, + Ar channel lies at —84.75 cm ™.

The Morse potential is represented in the standard form

VMorse(r) — D(e—Za(r—re) _ 2e—(x(r—re)) (3)

with the following parameters:'? a. = 0.908 596 909 A~!, D =
99 cm™!, and r, = 3.757 A. The well depth and the equilibrium
distance of the Morse potential coincide with those of the Aziz
potential. Due to different shapes of the potentials, however,
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the corresponding dissociation energies differ. It is equal to
83.93 cm™! for the Morse potential and to 84.75 cm™' for the
Aziz potential compare to the experimental result 84.47 cm™!.23

Numerical Approach. The calculations have been performed
using the three-dimensional finite element method. The method
coincides with that used in ref 20 for the neon trimer calcula-
tions. This implementation is discussed in refs 24 and 25. The
three-dimensional configuration space is divided into a number
of elements. In each element, the component ¥’(x,y,¢p) of the
total wave function is expanded into a sum of local basis
functions

PEyd) = 2 cinfinlxyd) @

Here index i numbers the element, and m indicates the local
basis function in each element. Expansion 4 reduces the
Schrodinger equation to the generalized eigenvalue problem

Hc = ESc

where vector ¢ determines expansion coefficients c¢;,. This
problem was solved using the Arnoldi method?® with the shift-
invert approach. The PARDISO library?’ was used for the
solution of the linear system of equations.

Calculations, Results, and Discussion

Calculations. The bosonic argon trimer belongs to Dj,
symmetry group. However, the use of Jacobi coordinate system
reduces Ar; molecular symmetry group to Cy,; i.e., only the
permutation of particles 2 and 3 would not affect the Hamil-
tonian in the new coordinates. Thus the total wave function of
the system can be chosen symmetric or antisymmetric with
respect to the permutation of atoms 2 and 3. The Hamiltonian
matrix splits into two blocks, one symmetric and one antisym-
metric. The first block contains totally symmetric A; states and
the first component of two-fold degenerate E states, while the
second contains totally antisymmetric A, states with the second
component of degenerate E states.!“!”> The computational
advantage of the wave function symmetry is the possibility to
divide calculation into two parts, using only odd or even
Legendre polynomials among z-direction and thus computing
antisymmetric or symmetric wave functions, respectively.

The mesh construction resembles that for our calculations of
the neon trimer.?’ However, the argon trimer has considerably
more energy levels, so the calculation accuracy has been
essentially improved. In total, 38 elements were used to describe
x and y coordinates within the interval [0, 18] au. The Legendre
polynomials up to a degree of 7 weighted by an exponential
function were used as local basis functions in the directions x
and y. One element only was used to describe the ¢-direction.
Basis functions were chosen to be the Legendre polynomials
up to a degree of 30. This mesh resulted in a sparse matrix
with the size 98 553. Matrix elements of the potential were
calculated using 15 Gauss-quadrature points in the x and y
directions, and 45 points in the ¢-direction.

Results for J = 0. In the present work we have calculated
energy levels and average root mean square (rms) radii for both
the Aziz and Morse potentials. To make the comparison with
previous results easier, we have used the argon mass ma, =
39.9624 amu for the Morse potential, and m,, = 39.948 amu
for the Aziz potential.
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TABLE 1: Vibrational Energy Levels (cm™!) for Ar,

\% Morse Aziz

0 -83.93 -84.75
1 -57.52 -59.04
2 -36.09 -38.38
3 -19.63 -22.90
4 -8.14 -11.99
5 -1.63 -5.16
6 -1.59
7 -0.22

TABLE 2: Ar; Vibrational Energy Levels (cm™!) for the
Morse Potential

this work

v A /E AL/E ref 9 ref 11 ref 10
Ay 0 25244 -25245 25243 -252.45
E 1 -22933 -229.33
Ay 2 -220.94 -220.94  -220.92 -220.94
Ay 3 -208.24 -208.24  -208.22 -208.24
E 4 -208.04 -208.03
E 5 -=201.05 -201.06
Ay 6 -193.73 -193.74  -193.72  -193.75
E 7  -190.74 -190.73
A 8 -189.06 -189.06  -189.04 -189.07
A, 9 —185.82
E 10 -182.92 -182.90
A 11 -181.36 -181.40 -181.38 -181.41
E 12 -179.06  -179.09
A 13 -177.26 -177.27  -177.24 -177.28
E 14 17477 -174.79
A 15  -171.70 -171.72  -171.67 -171.72
E 16 -171.58 -171.58
A 17 -168.90 -168.90 -168.63 -168.90
E 18 -168.89 -168.89
A 19 -167.99 -168.00 -167.72  -168.00

While these potentials have the same position and depth of
the minimum, the number and the values of energy levels differ
already for the argon dimer; see Table 1. The results for the
Morse potential coincide with those calculated in ref 9.

For the argon trimer, we have obtained first 267 symmetric
states (those include A, levels and the first component of E
states) and 217 antisymmetric states (A, levels and the second
component of E states) below the dissociation channel for the
Morse potential. For the HFDID1 potential, we have obtained
the first 325 symmetric and 271 antisymmetric states. It is worth
noting that the energy calculations near the two-body threshold
are less accurate due to a complicated structure and large size
of the corresponding wave functions. As our calculations are
variational, the exact numbers of energy levels may thus only
be bigger than those mentioned above. Some examples of the
computed energy levels are given in Tables 2 and 3. The
differences between symmetric and antisymmetric parts of E
states are within the 0.05 cm™! limit for all calculations.

Coming to the convergence of our results, we should state
that the quantitative estimate of the error is always a complicate
task. Hence we try to estimate the errors with different
arguments. The first estimate gives the difference between the
energies of symmetric and antisymmetric parts of E states.
Clearly, the total error cannot be lesser than this difference,
which results in the 0.05 cm™! error. Other estimation is based
on the extrapolation of the energy levels when the number of
the expansion function is increased.?® Comparing the calculated
energy levels with the extrapolated ones, we can use their
difference as a measure of the error. This approach gives us
the error 0.01 cm™! for first 20 levels. Finally, the errors can be
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TABLE 3: Vibrational Energy Levels (cm™!) for the Ar;
with the Aziz Potential

this work ref 12

ref 15
T v AI/E Az/E AI/E Az/E A]
A 0 -254.89 -254.89 -254.89
E 1 23236 23236 -232.38 -232.38
A 2 22428 -224.29 -224.28
A 3 21194 -211.95 -211.94
E 4 -211.82 -211.81 -211.83 -211.83
A 6 -198.23 -198.24
A 8 -193.50 -193.51
A 11 -186.26 -186.30
A 13 -182.24 —182.26
A 15 -177.11 -177.13
A 17 -173.50 —173.52 -173.51
E 18 -17342 -17342 -17343 -173.43
A 19  -172.71 -172.75 -172.73
E 20 -172.39 -17237 -17242 -172.42
E 21 -171.78 -171.78  -171.79  -171.79
A 22 -171.60 -171.61 -171.60
A, 23 -171.15 -171.21
E 61 -145.81 -145.80 -145.85 -145.85
A, 62 -145.76 —145.82
A, 63 14531 —145.37
E 64 14456 —144.55 —144.64 -144.64
A, 65 -144.07 -144.12

estimated by comparison with other calculations; see Table 2
and Table 3. Here, we can see that the error is below 0.04 cm ™!
for the first 20 Morse levels and does not exceed 0.06 cm™! for
the first 60 Aziz levels.

We have also calculated the average rms distances, {*),"?,
that characterize the space extension of the argon trimer. These
values were also useful to choose the proper size of the grid
required for accurate computations.

Morse Potential. The results for the 20 deepest energy levels
for Morse potential are presented in Table 2. Only totally
symmetric A; states have previously been studied in the
literature. The first 10 symmetric A; states calculated in refs
9—11 are also given in Table 2. For all energy levels, our results
are in a good agreement with all previous calculations.>!%!! The
discrepancies found in ref 8 are corrected in ref 9 with the
extension of the expansion basis.

The difference between our results and results of ref 11 does
not exceed 0.03 cm™! for the levels below —170 cm™!. Taking
into account the accuracy 0.02 cm™' reported in ref 11, the
results perfectly agree. For the levels above —170 cm™!, the
difference is much bigger. The authors of ref 11 remarked that
their approach based on distributed Gaussian basis was prob-
lematic near the barrier to linearity that can be estimated about
—170 cm™!. This threshold is clearly visible in Figure 1 that
illustrates the distribution of the Ars states.

The comparison of our results with refs 9 and 10 reveals good
agreement for all energy levels. The results agree within the
0.05 cm™! error bar.

Aziz Potential. In Table 3, our results for the potential of
Aziz are compared with the energy levels calculated in ref 12
and ref 15. In ref 12 by Wright and Hutson, they applied the
DVR method in the Jacobi coordinate system, which allowed
them to obtain reliable results near the isomerization threshold.
The reported accuracy is 0.05 cm™!. Table 3, presenting a
selection of the first 66 states, shows that the difference between
the same energy levels does not exceed 0.06 cm™! for the first
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Figure 1. Eigenvalue distribution of the argon trimer. The top line

corresponds to the Morse potential; the bottom line, to the Aziz

potential. The isomerization barrier to linearity is visible around —170
-1

cm ™.

TABLE 4: Average rms Radii (108) for the Ar; Vibrational
Levels

v Morse Aziz
A 0 391 391
E 1 3.98 3.99
A 2 3.99 4.00
A 3 4.02 4.03
E 4 4.05 4.06
E 5 4.05 4.06
A 6 4.10 4.12
E 7 4.18 4.20
A 8 4.10 4.11
A, 9 4.19 4.09
E 10 4.16 4.18
A 11 4.18 4.21
E 12 4.29 4.30
A 13 4.22 4.23
E 14 4.25 4.27
A 15 4.52 4.50
E 16 4.60 4.58
A 17 5.59 4.67
E 18 4.85 5.00
A 19 4.80 4.52

60 levels. The selection coincides with that of ref 12 for the
sake of comparison.

The authors of ref 15 used row-orthonormal hyperspherical
coordinates and an expansion of the wave function in terms of
hyperspherical harmonics for calculation of the A, states.
Comparing our energies with these results, we can see that
agreement for the first 10 states is even better. For most of the
levels, the difference does not exceed 0.02 cm™! while reaches
0.04 cm™! for one level only. This comparison proves good
agreement between all results. With the accuracy achieved we
are able to distinguish energy levels away from the dissociation
threshold.

In Figure 1, the energy level distribution is shown. We can
see a great increase in the level density near the isomerization
barrier to linearity. While there are only about 20 states below
this barrier, the density close to the energy E = —110 cm™! is
about 6 states/cm~!. Such a high density makes upper states
harder to distinguish.

In Table 4 and Figure 2, the rms radii for a few lower energy
levels are presented. It can be seen that they increase regularly
with the energy below the isomerization barrier. Near the barrier
and above it, the behavior becomes highly irregular. Due to
these irregularities, the rms radii can be rather different for
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Figure 2. Average rms radii (A) for the Ar; symmetric A, states with
the Aziz potential.

different potentials while they nearly coincide below the barrier
as shown in Table 4. One can also see in Figure 2 that there
exist few very extended states the radii of which are considerably
larger than radii of neighboring states.

Results for Nonzero Total Angular Momentum. For
calculations with the nonzero total momentum, we used the same
grid that was used for the zero momentum calculation. Namely,
each component s of the total wave function " has been
expanded according to eq 4 with the parameters mentioned in
the previous section. The only difference is the using of the
associated Legendre polynomials Pj(¢) of the order s for the
angular variable. The parity is the good quantum number, so
we are to solve two independent sets of linear equations. They
consist of (J + 1) and J components for the positive and negative
parity, respectively. As the same basis is used independently
for each component, we do not expect big changes in the
accuracy of the calculations.

For the zero momentum calculations, we were able to split
all the states into symmetric and antisymmetric sets with respect
to the permutation of atoms 2 and 3. As the off-diagonal block
operators in eq 1 is antisymmetric with respect to the angle,
we can make the similar splitting for the nonzero momentum
also. Therefore, if we use the even Legendre polynomials for
the s = 0 component, we only need odd polynomials for the s
= 1 component, even polynomials for the s = 2 component
etc. The analogous intermittent parity behavior we find for the
odd polynomials in the zeroth component.

The described splitting has two important advantages. First,
it reduces two times the matrix size to compute. Secondly, it
greatly facilitates the level classification, giving symmetric and
antisymmetric ones in the separate calculation runs.

In Table 5, we present our results for the first four rovibra-
tional levels up to J = 2. They include all the levels for both
nondegenerated (Ey, E,, E3) and degenerated E; states. We also
note that the accuracy for the calculations can be estimated using
the degeneracy properties of the system. In our case, the levels
corresponding to the rotationless A, states are doubly degener-
ated for nonzero values of K. We can see in Table 5 that this is
true for Ey and E, states while Ej state experiences a consider-
able splitting, i.e., a calculation error up to 0.03 cm™.

Unfortunately, we cannot make the direct comparison with
available data because the rotational calculations with the Aziz
potential without three-body forces are not accessible. However,
we can try to estimate the rotational part of the energies. If we
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TABLE 5: Rovibrational Energy Levels (cm™ ') for the Ar; with the Aziz Potential

J K Eo(A)) Ei(A) Ei(Ay) Ex(Ay) Es(Ay)
0 0 —254.89 -232.36 —232.36 —224.28 -211.94
1 0 —254.77 -232.25 —232.25 —224.17 -211.83
1 —254.81 -232.30 -232.30 —224.21 -211.81
1 —254.81 -232.25 —232.24 -224.20 -211.80
2 0 —254.54 -232.03 -232.03 —223.94 -211.60
1 —254.57 —232.07 —232.07 —223.98 -211.59
1 —254.57 -232.03 -232.01 -223.98 -211.56
2 —254.68 -232.18 —232.18 —224.09 -211.70
2 —254.68 -232.02 -232.02 —224.09 -211.69

assume that the three-body forces act on different s-components
in a similar way, we can refine rotational excitations of the same
vibrational state from the three-body corrections. Then we can
compare these excitations with those presented in Table III of
ref 15. Our results for the differences E(J =2, K =0) — E(J
= 0, K = 0) are equal to 0.35, 0.34, and 0.34 cm™! for Ey, E,,
and Ej;, respectively. The corresponding results of ref 15 are
given by 0.35, 0.34, and 0.34 cm™!, which shows excellent
agreement for these rotational excitations.

Assignment of specific quantum numbers to the rovibrational
spectrum may pose a complicated problem. In our calculations,
the only good quantum numbers are the vibrational state number
v, the total angular momentum J and the parity. The total angular
momentum projection K can also be used to label the bound
states while it is not a conserved quantum number. In this
approach, we do not have other expansion parameters that are
physically meaningful. This means that we should analyze the
spatial structure of the wave function to assign some additional
approximate quantum numbers to the energy level. We do not
address this question here.

The rotational structure of the nondegenerated energy levels
for the symmetric planar trimer is given by

Fi (J.K) = B,,(J(J + 1) — K’/2) )

The rotational constant By, in an average during the vibration
and thus depends on the vibrational level. If we assign the K
number with eq 5, we can see that the rovibrational levels E,
E,, and E; are perfectly described by this equation. The fitting
error is less than 0.01 cm™'.

For higher vibrational levels, the validity of eq 5 becomes
questionable,' and this equation cannot be used for the level
classification. A more accurate way of the level classification
was discussed in ref 7. In this way, we consider the norm
distribution of the wave function components 1 with respect
to s and attribute the center of this distribution to K. This
attribution is meaningful for a narrow distribution only,
otherwise K can hardly be assign to the level with a flat norm
distribution.

Statistical Analysis

The density of the argon trimer levels above the linearity
barrier is rather high. Their wave function structure is quite
complicated, and the quantum number assignment is problem-
atic.'? All this makes it feasible and meaningful to study the
statistical properties of the trimer energy levels.

It is known that the classical dynamics of a rotationless Ar;
cluster is defined by its energy. Three different energy ranges
are known for the cluster with pairwise Lennard-Jones poten-
tials.'® At the lowest energies, the dynamics is nearly regular,
but this energy range, below lowest vibrational level, is not

accessible in the quantum mechanical system. The next energy
range reaches the isomerization barrier. Very few levels of the
quantum trimer in this range prevent us from performing a
statistical analysis here. Only the energy range above the barrier
to linearity is accessible for the statistical analysis of the
quantum system.

Prior to the statistical analysis, it is essential to “unfold” the
spectrum, i.e., make the average density of the energy levels
uniform over the entire energy range.’>3! To calculate a new
set of energy levels {E,, E, ..., E,} from the old set {E,, E|, ...,
E,}, two different unfolding procedures have been used. The
reason is that the unfolding procedure, E = ®(E), is ambiguous
as it includes a functional parameter. Then the meaningful
statistical results should be stable with respect to the unfolding.
Choosing two different unfolding procedures, we have a
possibility to compare the results and check their reliability.
We have also verified the translation invariance of our results,
i.e., their stability with respect to small changes in the energy
range.

The first unfolding procedure requires fitting the integrated
level density

NE) = Y O — E) 6)
=0

where O(E) is the Heaviside step function, by a polynomial
function

3
F(E)= Y, aF (7
=0

Unfolded energy levels are then given by
E, = F(E) (8)

Another approach gives the unfolded spectrum by dividing all
the level spacings by the local average spacing

P Ly — E
E, =E + Q2k+ 1)E+1——E ©))
Ja J1

Here j; = max(0,i—k), j, = min(n—1,i+k). In this work we have
used kK = 3 as in ref 18.

The unfolded spectrum E; of constant level density can be
used for various statistical tests. To estimate short-range
correlations between the energy levels, the nearest neighbor level
spacings distribution (NNSD)* has been used. The NNSD P(s)
is the distribution of the nearest neighbor level spacings between
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two consecutive levels normalized with respect to the average
level spacing. The spectral rigidity A3(r)*® has been used to
diagnose long-range correlations between the levels in an
interval of energy E, E + r. The spectral rigidity is the mean
square deviation from the straight line of the unfolded set {(,
E)}, and is given by equation

.1 pEtr - - .
A(r) = min fE (N(E) — AE — B)*dE  (10)

Here r gives also the mean number of energy levels as the mean
level spacing is normalized to 1. As the spectral rigidity depends
on a few levels contained in the energy interval (E, E + r) only,
we have averaged this value throughout the unfolded spectrum
of interest.'®

For the classical system with the regular dynamics, the level
statistics in the semiclassical limit is proven to be the Poisso-
nian.’> Then the NNSD and Aj; statistics have the form

P(s) = exp(—s) (11)
An) =15 (12)

For the chaotic classical Hamiltonian, A;(r) is identical to that
of the Gaussian orthogonal ensemble (GOE):*

Ay(r) = %(log(r) — 0.0687) (13)
4

with a standard deviation of £0.11. The NNSD follows the
Wigner distribution

2
P(s) = % exp(— ”TS) (14)

For systems that are intermediate, i.e., neither completely
chaotic nor completely regular, Brody proposed?? the following
distribution for the NNSD

P(s,w) = As” exp(—os'™) (15)

where

(2)
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A=+ o) o

o= r]+w(2 + (,l))

We have performed the statistical analysis for the E, A}, and
A, levels. Results for the A, levels resemble those for other
symmetries, so we do not show them for the sake of compactness.

In Figures 3 and 4, the Az values are plotted. For small values
of r, all distributions are close to the value obtained from (12),
which is the random sequence of levels. On the other hand, the
A; statistic is a typical measure for long-range order in a
spectrum; hence it becomes important only for larger values of
r. Starting from values r = +4 to —5, the Aziz spectrum follows
the law (13) for the Gaussian orthogonal ensemble. The energy
levels for both E and A, representations give similar results.
Still one can notice that the A, levels closely follow the Wigner
distribution while the distribution for the E levels is intermediate
between the Poisson and Wigner ones while essentially closer
to the latter. The pictures for the Morse potential are qualitatively
similar. However, statistic for both representations are clearly
intermediate with A; levels being little bit closer to the Wigner
distribution.

To plot the NNSD (Figures 5 and 6), we have used 59 and
89 energy levels for A, and E representations, respectively. The
NNSD were fitted by the Brody distribution with the parameter
o representing the measure of the system stochasticity. The
histograms show that for the Aziz potential, the level distribu-
tions perfectly fit the GOE distribution for both E and A, levels.
The corresponding w parameters are fitted to be 0,92 and 1,0,
respectively. For the Morse potential, the w parameters are
calculated to be 0.37 and 0.55 for E and A, levels, respectively.
These values confirm the observation about the intermediate
type of the level distribution for the Morse potential. This means
that the dynamics of this system is a mixture of regular and
chaotic motions.

We have also calculated the correlation coefficient for
adjacent first-order spacings’!

C1) = (QLIS(1) = DIJIS,(1) = D)) x
(XI5 =D (16)

Here Si(1) is the first nearest-neighbor spacing, Si(1) = Ei+; —
E;, and D is their mean value. This coefficient is known to be
C(1) = —0.271 for the GOE, and C(1) = O for the Poisson
statistic. In Table 6 we can see that for the Aziz potential,

(b)

Figure 3. A; statistic for the E representation for different potentials superimposed with the Poisson (eq 12) and the GOE (eq 13) distributions.
(a) Level statistics for the potential of Aziz in the range —173.4 to —109.6 cm™!. A total of 89 energy levels are included. (b) Level statistics for
the Morse potential in the energy range from —172 to —110 cm™'. A total of 73 energy levels are included.



Bosonic van der Waals Argon Trimer

(2)

J. Phys. Chem. A, Vol. 113, No. 52, 2009 14985

(b)

Figure 4. A; statistic for the A, representation for different potentials superimposed with the Poisson (eq 12) and the GOE (eq 13) distributions.
A total of 59 energy levels in the interval [—173.5, —109] cm™! are included for the Aziz potential (a). A total of 49 energy levels in the interval

[—172, —111] cm™" are included for the Morse potential (b).
0,84 ]

071 "\

0,6

0,5

P(s) 0,4

0,31

0,2 A

0,11

P(s) 0,4+

0,87
0,74

0,61

(b)

Figure 5. Nearest neighbor level spacing distributions for the E representation superimposed by the Brody distribution (eq 15). (a) NNSD for the
Aziz potential with 89 levels included. (b) NNSD for the Morse potential with 73 levels included. The parameter w was fitted to be 0.92 and 0.37,

respectively.
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Figure 6. Nearest neighbor level spacing distributions for the A, representation for (a) the Aziz potential with 59 levels included and (b) the Morse
potential with 49 levels included. The parameter @ was fitted to be 1.0 and 0.55, respectively.

statistics are intermediate to Poisson and GOE. We note that
when we decrease the energy range for C(1) calculations, the
correlation coefficient also decreases and stabilizes at the value
C(1) = —0.26 for the E levels. Hence the distribution perfectly
resembles the GOE distribution.

For the Morse potential, C(1) are below the GOE value.
Recalling then for a level sequence with two alternating constant
spacings, C(1) = —1,3! we can expect signs of a regular structure
in this case. However, one should remember that the precision

TABLE 6: Correlation Coefficients for Adjacent
First-Order Spacings C(1)

E A
Aziz potential -0.19 -0.14
Morse potential -0.29 -0.38

of numerical results of C(1) is worse than for As and the NNSD,
so the additional careful study may be necessary to rely upon
these data.

Comparing our results for the Aziz and Morse potentials with
those for the Lennard-Jones potentials,'® we can see some
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dependence of the level statistics on the pairwise interactions.
While the level distributions for the Aziz and Lennard-Jones
potentials are rather close to the Wigner distribution, that for
the Morse potential is clearly intermediate to Poisson and
Wigner; i.e., dynamics is a mixture of regular and chaotic
motion. One reason for this difference could be different
behavior of the potentials at large distances, affecting high
vibrational states.

Conclusions

In this paper we have studied the rovibrational spectrum of
the argon trimer for two different potentials. Firstly we can see
that our numerical approach, the three-dimensional finite element
method, is able to accurately calculate the spectrum of triatomic
molecules with many levels of interest, at least up to a few
hundred. This makes it feasible to use this approach for studying
various systems, both rotationless systems and systems with
nonzero total momentum.

Comparing two potentials for the trimer, we can see two
distinct ranges in the spectrum. For the deepest levels, both
potentials are fitted to give similar (while distinct) eigenvalues.
For higher excited vibrational states, however, this similarity
breaks. The number of levels and the order of levels with respect
to the symmetry representation are completely different, espe-
cially above the isomerization barrier. This difference is also
reflected in the statistical characteristics of the spectrum while
in both cases, the level distributions are intermediate between
the Poisson and Wigner ones. For the Aziz potential (as well
as for the Lennard-Jones potential'®) the level distribution is
rather close to the Wigner one, and the system exhibits stochastic
behavior similar to the Gaussian orthogonal ensemble. For the
Morse potential, dynamics found to be a mixture of regular and
chaotic motion.
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